SUBSTITUENT ELECTRONEGATIVITY PARAMETER AS THE ORIGIN OF FIELD EFFECT IN ALIPHATIC SYSTEMS

Shozo MASUDA and Naoki INAMOTO*

Research Centre for Spectrochemistry and Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Tokyo 113, Japan

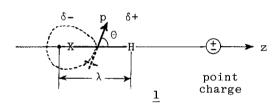
Jun NIWA*

College of General Education, Nagoya University, Chikusa-ku, Nagoya 464, Japan

Linear relationship between substituent electronegativity parameter ($\Delta\iota$ or σ_χ) and field parameter ($\sigma_I(g)$) was obtained by using the charge separation parameter (λ) between positive and negative poles in H-X molecule calculated by <u>ab initio</u> MO method.

An elucidation of a role of group electronegativity in the field effect may cast a light on the interpretation of electronic effect of substituent in the multiparameter Hammett equation. 1 Previously we pointed out that the inductive substituent parameters (1) based on electronegativity were not linearly related to the field parameters (σ_I) .² Recently, Reynolds³ and Taft et al.⁴ have also indicated the nonlinearity in the plot of the observed dipole moments of substituted methanes (p_{MeX}) against the group electronegativities and also in the plot of the substituent electronegativity parameters (σ_{γ}) , which were determined from the charge $(1-q_H)$ on the hydrogen in H-X calculated at 6-31G* level, ⁴ against the substituent field parameters (σ_F) . ^{4b}

We wish to report here that a linear relationship between the inductive substituent $(\Delta\iota (=\iota_X - \iota_H))^{6c}$ or the substituent electronegativity parameter $(\sigma_\chi)^4$ and the field parameter $(\sigma_{\tau}(g))^5$ defined from phenol acidities in gas phase was obtained by using the following equations.


$$\sigma_{\tau}(g) = 0.972 \cdot \sigma_{v} \cdot \lambda$$
 (r = 0.984, n = 11) (2)

where λ is the distance between positive and negative poles in H–X molecule as represented schematically in 1. The $\Delta\iota\cdot\lambda$ and $\sigma_\chi\cdot\lambda$ terms are proportional to the z-component of the dipole moment of H-X molecule (i.e., $p_z = p \cdot \cos\theta$; see 1). Moreover, it has been shown that the $\Delta \iota$ value, which is proportional to $\Delta \chi$ of the substituents in the same period, 6c is proportional to the charge (1-q $_{
m H}$) on

		0		,		
4-31G ^a)			6-31G ^a)			
1 - q _H	$p_{Z}(D)^{b}$	λ (Å)	1 - q _H	$p_{Z}(D)^{b}$	λ (Å)	
0.1522	0.00	0.000	0.1549	0.00	0.000	
0.3042	0.73	0.500	0.3086	0.73	0.495	
0.3967	1.24	0.651	0.3977	1.24	0.649	
0.3936	1.60	0.846	0.4257	1.62	0.796	
0.1541	1.57	2.121	0.1484	1.58	2,221	
0.4786	2.28	0.992	0.4820	2.30	0.992	
0.2104	2.17	2.147	0.1972	2.20	2.320	
0.1559	1.20	1.603	0.1498	1.21	1.682	
0.3308	3.25	2.046	0.3336	3.27	2.039	
0.4320	3.51	1.692	0.4247	3.53	1.733	
	1 - q _H 0.1522 0.3042 0.3967 0.3936 0.1541 0.4786 0.2104 0.1559 0.3308	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Table 1. The charges on hydrogen $(1-q_H)$, z-components of dipole moments (p_Z) , and the distances of charge separation (λ) in H-X molecules.

a) The molecular geometries were taken from experimentally determined values, (cf. ref. 6a). b) $p_z = p \cdot \cos\theta$ in Debye unit.

the hydrogen atom in the H-X molecule. 6b

The values of $(1-q_H)$, p_Z , and λ by calculated at 4-31G and 6-31G levels are given in Table 1. The $\Delta\iota\cdot\lambda$ and $\sigma_\chi\cdot\lambda$ values were plotted against $\sigma_I(g)$ in Fig. 1, where the average values at 4-31G and 6-31G levels were used as λ (λ =p·cos0/[e(1-q_H)]). These results confirmed that the product of the substituent electronegativity parameter, $\Delta\iota$ or σ_χ , and the charge separation parameter (λ), that is, the z-component dipole moment (p_Z) is the origin of the field effect in HX molecule. In fact, the following equations were obtained:

$$\sigma_{\rm I}({\rm g}) = 0.192 \cdot {\rm p}_{\rm Z}$$
 at 4-31G level
 $({\rm r} = 0.988, {\rm n} = 11)$
 $\sigma_{\rm I}({\rm g}) = 0.190 \cdot {\rm p}_{\rm Z}$ at 6-31G level
 $({\rm r} = 0.988, {\rm n} = 11)$

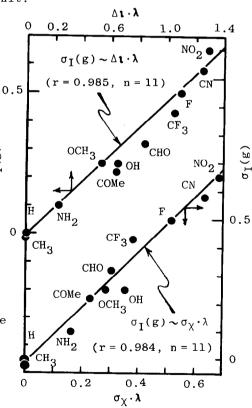


Fig. 1. Relationship between field parameter $\sigma_I(g)$ and $\Delta\iota\cdot\lambda$ or $\sigma_\chi\cdot\lambda$ term.

System	Parameter	Slope	r ^{a)}	_{SD} b)	f ^{c)}	n
2	$\begin{cases} \Delta \iota \cdot \lambda \\ \sigma \chi \cdot \lambda \end{cases}$	2.07 3.93	0.966 0.957	0.26 0.33	0.18 0.19	9 9
<u>3</u>	$\left\{ egin{array}{l} \Delta \imath \cdot \lambda \ \sigma_{\chi} \cdot \lambda \end{array} ight.$	$\substack{0.75\\1.43}$	0.973 0.973	0.16 0.11	0.16 0.17	7 7
$\frac{4}{}$	$\begin{cases} \overset{\wedge}{\sigma_{\chi}} \cdot \lambda \\ \overset{\circ}{\sigma_{\chi}} \cdot \lambda \end{cases}$	2.34 4.59	0.990 0.991	0.22 0.23	$\begin{smallmatrix}0.12\\0.12\end{smallmatrix}$	7 7

Table 2. Statistical analysis of substituent effects on acid dissociation constants $(\log(K/K_H))$ of 2-4.

In connection with recent report, ^3 the acid dissociation constants of substituted acetic acids ($\underline{2}$), 4-substituted bicyclo[2.2.2]octane-1-carboxylic acids ($\underline{3}$), and 4-substituted quinuclidinium ion ($\underline{4}$) were selected. The results of the statistical analysis of the relative dissociation constants using the new term, $\Delta\iota\cdot\lambda$ or $\sigma_\chi\cdot\lambda$, in HX are given in Table 2. They show a good correlation in each system. Therefore, the origin of the field effect ^{6a} of substituent is attributed to the z-component of the dipole (i.e., p·cos0) caused by the group electronegativity of substituent.

Marriott and Topsom have recently calculated a theoretical scale of field parameter ($\sigma_{F(theor)}$) for a wide variety of substituents by using a hypothetical proton transfer process in an isolated molecule system at a longer distance (r = 4.5 $\mathring{\text{A}}$ or above). In order to explore the origin of the field interaction energy caused by substituent dipole close to probe center, we

Table 3. Relative isodesmic reaction energies ($\delta\Delta E$) and its component energies^{a)} for Eqs.(3) and (4) at 4-31G level (in kcal mol⁻¹).^{b)}

System	r (Å)	δΔΕ	δES	δPL	δСТ	δEX	δMIX
$\begin{array}{c} \\ \text{H}_{3} \\ \text{NH} \\ \cdots \\ \\ \text{H}_{-F} \\ \text{H}_{-NO}_{2} \end{array}$	2.5	7.64 20.98 27.10	8.93 23.74 30.55	-4.69 -2.95 -5.47	-3.76 -3.70 -3.62	4.53 2.43 3.51	2.63 1.46 2.13
$-O_2^{CH} \cdots \begin{cases} H-NH_2 \\ H-F \\ H-NO_2 \end{cases}$	2.5	2.89 -7.52 -12.90		-2.00 -4.21 -6.45	-4.27 -4.13 -5.27	14.19 10.05 12.59	1.41 1.79 2.73

a) Negative sign denotes stabilization energy. b) 1 cal = 4.184 J.

a) Correlation coefficient. b) Standard deviation. c) Goodness of fit (SD/RMS). RMS denotes the root mean square of the data.

carried out the energy decomposition analysis 8 for the relative energies ($\delta\Delta E$) of the proton transfer isodesmic reactions [Eqs. (3) and (4)] for molecular pairs 5 and 6 at various distances (r=4.5, 3.5, 2.5, 2.25, and 2.0 Å) by ab initio MO method at 4-31G level. The distance r was taken from the H atom in H-X to the charged N atom or the carbonyl carbon atom. The relative interaction energy ($\delta\Delta E$) was divided into the five components as follows:

 $\delta\Delta E = \delta ES + \delta PL + \delta CT + \delta EX + \delta MIX$ where the relative component energy δES means electrostatic, δPL polarization, δCT charge transfer, δEX electron exchange repulsion, and δMIX the higher order terms. Typical data of the energies $(\delta\Delta E)$ and its energy components for the molecular pairs $\underline{5}$ and $\underline{6}$ are shown in Table 3 only for the case of r=2.5 Å. The δES term is generally predominant in $\delta\Delta E$, except for $\underline{6}$ at distances shorter than 3 Å where the δEX term considerably contributes to $\delta\Delta E$. Figure 2 shows that the δES term in $\underline{5}$ and $\underline{6}$ correlate with the parameter,

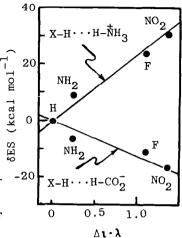


Fig. 2. Relationship between δES and $\Delta \iota \cdot \lambda$ in $\underline{5}$ and $\underline{6}$ at r=2.5 Å.

the δES term in $\underline{5}$ and $\underline{6}$ correlate with the parameter, $\Delta\iota\cdot\lambda$, even in shorter distances.

Thus, it was shown that $\Delta\iota$ or σ_χ is correlated with the field parameter, $\sigma_I(g)$ and σ_F , by using the charge separation parameter (λ).

This study is being extended to other substituents and systems.

References

- 1. J. Shorter, "Correlation Analysis in Chemistry Recent Advances," ed. by N. B. Chapman and J. Shorter, Chapt. 4, Plenum Press, London (1978).
- 2. N. Inamoto and S. Masuda, Tetrahedron Lett., 3287 (1977).
- 3. W. F. Reynolds, J. Chem. Soc., Perkin Trans. 2, 985 (1980).
- a) W. F. Reynolds, R. W. Taft, S. Marriott, and R. D. Topsom, Tetrahedron Lett., 23, 1055 (1982);
 b) S. Marriott, W. F. Reynolds, R. W. Taft, and R. D. Topsom, J. Org. Chem., 49, 959 (1984).
- 5. M. Fujio, R. T. McIver, Jr., and R. W. Taft, J. Am. Chem. Soc., <u>103</u>, 4017 (1981).
- 6. a) N. Inamoto, S. Masuda, and J. Niwa, Bull. Chem. Soc. Jpn., <u>58</u>, 158 (1985); b) Idem, Chem. Lett., 1003 (1982); c) Idem, ibid., 1007 (1982).
- S. Marriott and R. D. Topsom, Tetrahedron Lett., 23, 1485 (1982); Idem,
 J. Am. Chem. Soc., 106, 7 (1984); Idem, ibid., 107, 2253 (1985).
- 8. K. Morokuma, Acc. Chem. Res., <u>10</u>, 294 (1977), and references cited therein. (Received in Japan 27 August 1985)